Dynamics of vesicles in a wall-bounded shear flow.
نویسندگان
چکیده
We report a detailed study of the behavior (shapes, experienced forces, velocities) of giant lipid vesicles subjected to a shear flow close to a wall. Vesicle buoyancy, size, and reduced volume were separately varied. We show that vesicles are deformed by the flow and exhibit a tank-treading motion with steady orientation. Their shapes are characterized by two nondimensional parameters: the reduced volume and the ratio of the shear stress with the hydrostatic pressure. We confirm the existence of a force, able to lift away nonspherical buoyant vesicles from the substrate. We give the functional variation and the value of this lift force (up to 150 pN in our experimental conditions) as a function of the relevant physical parameters: vesicle-substrate distance, wall shear rate, viscosity of the solution, vesicle size, and reduced volume. Circulating deformable cells disclosing a nonspherical shape also experience this force of viscous origin, which contributes to take them away from the endothelium and should be taken into account in studies on cell adhesion in flow chambers, where cells membrane and the adhesive substrate are in relative motion. Finally, the kinematics of vesicles along the flow direction can be described in a first approximation with a model of rigid spheres.
منابع مشابه
Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.
We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities...
متن کاملImpact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion
The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...
متن کاملThe dynamics of a capsule in a wall-bounded oscillating shear flow
X iv :1 50 7. 05 22 1v 1 [ ph ys ic s. fl udy n] 1 8 Ju l 2 01 5 The dynamics of a capsule in a wall-bounded oscillating shear flow LaiLai Zhu, 2, a) Jean Rabault, 3, 4 and Luca Brandt Linné Flow Center and SeRC, KTH Mechanics, S-100 44 Stockholm, Sweden. Laboratory of Fluid Mechanics and Instabilities, Station 9, EPFL, 1105 Lausanne, Switzerland École Polytechnique, 91128 Palaiseau Cedex, Fran...
متن کاملStudy of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کامل1 Geometry of state space in plane Couette flow
A large conceptual gap separates the theory of low-dimensional chaotic dynamics from the infinite-dimensional nonlinear dynamics of turbulence. Recent advances in experimental imaging, computational methods, and dynamical systems theory suggest a way to bridge this gap in our understanding of turbulence. Recent discoveries show that recurrent coherent structures observed in wall-bounded shear f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 89 2 شماره
صفحات -
تاریخ انتشار 2005